3D Hydrodynamical Simulations of Ejecta-Companion Interaction for Type Iax Supernovae

Yaotian Zeng Cooperators : Zhengwei Liu, Zhanwen Han, Callum McCutcheon,

Hailiang Chen ...

Yunnan Observatories, Chinese Academy of Sciences

Contents

- -1. Introduction
- -2. Simulation models
- -3. Method
- -4. Results
- -5. Summary
- -6. Future work

1.Introduction What we know about SN Ia

Thermonuclear explosion

> Mass of the WD \sim 1.4 M $_{\odot}$

Gamezo et al. (2003)

What we still not know about SN Ia ?

✓ The progenitor system ?

✓ The explosion mechanism ?

The importance of SN Ia

the Nobel Prize in Physics 2011

Progenitor model

• Single-degenerate (SD) model

(Whelan & Iben 1973; Nomoto 1982; Han & Podsiadlowski 2004...)

Progenitor model

• Double-degenerate (DD) model

(Iben & Tutukov 1984; Webbink 1984...)

degenerate star

degenerate star

WD + WD

SD model:

Bright source

DD model:

No Bright source

SN Iax

	Normal Ia	Iax
Peak luminosity	~-19.3 mag	-14.2 ~ -18.4 mag
Explosion energy	~ 10 ⁵¹ erg	~ 10 ⁵⁰ erg
Ejecta velocity	~ 10 ⁴ km/s	2000 ~ 8000 km/s
Ejecta mass	$\sim 0.7 \ \mathrm{M_{\odot}}$	0.15 ~0.5 M _o

(Foley et al. 2013)

Three observations suggest a SD progenitor system for SN Iax

• Bright source : SN 2012Z (McCully et al. 2014)

• He lines in early-time spectra : 2004cs, 2007J (Jacobson-Galan et al. 2019)

 Short delay time (<100Myr) (Foley et al. 2009; Lyman et al. 2013, 2018)

Bright source

(McCully et al. 2014. Nature)

WD + He star

WD + He star

(Foley et al. 2009; Lyman et al. 2013, 2018)

2.Simulation models

If SN Iax is from WD + He star channel

Question: (1) Ejecta VS the Companion star? (2) Surviving companion star?

To Simulate SN ejecta impact He star

Progenitor model : CO WD + He star

Explosion model : a weak deflagration

(N5def in Kromer et al. 2013)

Liu et al. (2012, 2013)

N5def Model (Kromer et al. 2013)

Yields of select species for model N5def.

	Bound remnant (M_{\odot})	${ m Ejecta}\ { m (M_{\odot})}$
Total	1.028	0.372
C	0.422	0.043
0	0.484	0.060
Ne	0.054	0.005
Mg	0.004	0.013
Si	0.015	0.025
S	0.004	0.009
Ca	0.0003	0.001
Fe	0.004	0.031
Ni	0.025	0.187
⁵⁶ Ni	0.022	0.158

The hydrodynamic evolution of N5def model

N5def Model

Compared with observation

N5def Model

Compared with observation

Spectral evolution from -6.3 to 14.6 days

(Kromer et al. 2013)

3. Method

Mass (M₀)	Radius R ₂ (10 ¹⁰ cm)	Separatio n A(10 ¹⁰ cm)	A/R ₂
1.24	1.91	(511.16 in Li	u et 21.720 13

The influence of ejecta on companion star

- stripped material
- heavy element

4. Results

Unbound masses —— time

Unbound mass ~ 0.005M_o

Different initial setup

Zeng et al. 2019; in prep

Unbound Masses(M_{o})
0.0072
0.0054
0.0046
0.0040

A/R_2	Unbound Masses(M_{o})
2.36	0.0072
2.70	0.0054
2.85	0.0046
3.01	0.0040

- As the ratio increases, the amount of stripped He mass will decrease.
- For the most system, the stripped He mass $\sim 4 \ge 10^{-3} M_{\odot}$

Non-detection He lines in SNe Iax late-time spectra

Different groups search for the He line:

(e.g., Foley et al. 2013; Jacobson-Galan et al. 2019; Tucker et al. 2019)

Why non-detection He lines in SNe Iax late-time spectra?

5. Summary

- Get unbound masses for different initial separation ratio setups, such unbound masses as a faction of the ratio follow a power law
- Unbound masses : 0.004 M_{\odot} (for most system of WD + He channel)
- Naturally explain non-detection He lines in late-time spectra of SNe Iax.

6. Future work

Long-term evolution of surviving companion star

Thank you !

Yields of select species for model N5def.

	Bound remnant (M _☉)	Ejecta (M _☉)
Total	1.028	0.372
С	0.422	0.043
0	0.484	0.060
Ne	0.054	0.005
Mg	0.004	0.013
Si	0.015	0.025
S	0.004	0.009
Ca	0.0003	0.001
Fe	0.004	0.031
Ni	0.025	0.187
⁵⁶ Ni	0.022	0.158

