Observations of Type Ia Supernova 2014J for Nearly 900 Days and Constraints on Its Progenitor System

Wenxiong Li (THU) Collaborators: X. Wang, M. Hu, Y. Yang, J. Zhang, J. Mo, Z. Chen, T. Zhang, S. Benetti, E. Cappellaro, N. Elias-Rosa, F. Huang, P. Ochner, A. Pastorello, A. Reguitti, L. Tartaglia, L. Tomasella and L. Wang

Lijiang, 6 August 2019

Outline

- Introduction of SN 2014J
- Evidence of CSM in the first five months
- Nebular phase evolution

SN 2014J

A nearby (~3.5 Mpc), normal and highly reddened (EBV = 1.2 mag) SN Ia.

Progenitor system: the companion is unlikely to be a RG with steady mass transfer or a luminous symbiotic system, e.g., Margutti+(2014) Perez-Torres+(2014) and Kelly+(2014).

Environment: CSM? e.g., Brown+(2015), Foley+(2014) and Yang+(2018)

Evidence of CSM in the first five months

Dust disk scatter model:

Hu et al. in prep.

 Table 7. Parameters of the Dust Structure

Parameter	Range	
θ_{obs}	$[10^{\circ}, 60^{\circ}]$	
$ heta_{disk}$	$[15^{\circ}, 30^{\circ}]$	
R_{in} /light day	[20, 110]	
R_{wid} /light day	[20, 110]	
$ au_B$	[0.2, 2.0]	

Comparison of the LCs of SN 2014J with simulations.

θ_{obs}	θ_{disk}	R_{in} /light day	R_{wid} /light day	$ au_B$
		Disk 1		
30.0°	15°	40	40	0.9
60.0°	15°	40	40	0.9

Table 8. Results from Mont	te Carlo Simulation
----------------------------	---------------------

Nebular Phase Evolution

(a) HST WFC3/UVIS F438W images

(b) HST WFC3/UVIS F555W images

HST images of SN 2014J from 216 to 882 days after $B_{\rm max}$

Luminosity evolution of 11fe, 14J and 15F. The last point of 14J is from Yang et al. (2017).

Table 9. Late-time Decline Rate of the Bolometric Light Curve of SN 2014J

Period(days)	decline rate($\Delta mag/100 days$)
277 - 365	1.37 ± 0.02
365 - 416	1.60 ± 0.03
416 - 533	1.43 ± 0.02
533 - 649	1.08 ± 0.04
649 - 700	0.84 ± 0.07
700 - 796	0.64 ± 0.04
796 - 881	0.45 ± 0.03
881 - 983	0.40 ± 0.05

Cause of flattening:

⁵⁶Co decay 0.98 mag/100 days

Unresolved light echo

excluded by Yang et al. (2018)

Cause of flattening:

⁵⁶Co decay 0.98 mag/100 days

Unresolved light echo

excluded by Yang et al. (2018)

Other radioactive decay: ⁵⁷Co, ⁵⁵Fe ... We consider: ${}_{57}Co \xrightarrow{t_{1/2}=271.8d} {}_{57}Fe$ and ${}_{55}Fe \xrightarrow{t_{1/2}=999.7d} {}_{55}Mn$

$$L_A(t) = 2.221 \frac{\lambda_A}{A} \frac{M(A)}{M_{\odot}} \frac{q_A^l f_{Al}(t) + q_A^X f_{AX}(t)}{\text{keV}} \exp(-\lambda_A t) \times 10^{43} \text{erg}$$

(Seitenzahl et al. 2014)

 57 Ni/ 56 Ni = 0.035 ± 0.011, consistent with delayed-detonation simulation (Maeda et al. 2010, Seitenzahl et al. 2013) rather than violent merger (Pakmor et al. 2012).

Flux excess in blue band CSM disk in ~10¹⁷ cm SD scenario (recurrent NV)

