Transitional Ia SNe SN2015bp And its early Carbon Absorption

Samuel Wyatt University of Arizona Tucson AZ, USA swyatt@email.arizona.edu https://github.com/swyatt7

Transitional SNe la

 Fast-declining, sub-luminous SN Ia with NIR primary maximum peaking before B-band max (Hsiao et al, 2015)

Burns et al, 2014

3.5

0

10

20

SN2005

SN2006mr

50

Peculiar/Transitional SNe la

Discovered on 2015-03-16 by CRTS

Table 5. Basic properties of SN2015bp

RA(J2000)	15:05:30.07
DEC(J2000)	+01:38:02.40
$JD^a_{explosion}$	2457093.64
$JD_{discovery}$	2457097.99
$JD_{max}(B)$	2457112.72
$B_{app}(max)$	13.69
$B_{abs}(max)^b$	-18.73
$\Delta m_{15}(B)$	1.56 ± 0.03
s_{BV}	0.671 ± 0.004
Host	NGC 5839
Heliocentric ${\rm Redshift}^c$	0.004
Distance Modulus ^d	32.15 ± 0.54
Distance $Modulus^e$	32.426 ± 0.007
$E(B-V)_{MW}$	0.046

^{*a*} Derived from the fit of the $v \approx t^{0.22}$ power law of Piro & Nakar (2013) to the Si ii $\lambda 6355$ Å velocity time evolution.

 b Absolute magnitude calculated after taking into effect the extinction from Schlafly & Finkbeiner (2011) and using the distance modulus estimated from SNooPy Burns et al. (2014) c Cappellari et al. (2011)

^d Distance modulus estimated using the mean Tully Fisher Relation from Theureau et al. (2007) ^e Distance modulus estimated using SNooPy Burns et al. (2014).

Srivastav et al, 2017

Data from CSP

SOFI data from the PESSTO archive

• Both the NIR (1.0693) and Optical (0.6580) show evidence of unburnt carbon

Hsiao et al, 2015

Wyatt et al, In Prep

log10(Flux)+constant

 Comparison with iPTF13ebh (Hsiao et al, 2015)

Wyatt et al, In Prep

• Optical CII compared to other Transitional SNe Ia at their earliest time

Wyatt et al, In Prep

 Relationship of earliest NIR CI absorption and decline rate for SNe Ia

Carbon Implications

- Current explosion models suggest that there should be a unitary ratio of C to O from SNe Ia.
- Oxygen absorption is a very prominent feature, but carbon very rarely shows itself as a feature except in the early stages after explosion
- NIR CI and CII do show themselves heavily in the early spectra, but diminish at roughly the same timescales.

Progenitor Scenario

- Unburned Carbon from the progenitor C-O white dwarf provides strong constraints on the possible explosion trigger
- It is not expected to survive the explosion of sub-CH mass white dwarfs via the helium double detonation mechanism and predicts that NIR C I (10693) is misidentified HV Helium 10830 (Boyle et al, 2017)
- The coincident optical and NIR detections suggest that this is in fact unburned carbon
- Suggests Deflagration \rightarrow Detonation

fin

• Thank you

TODO

- Science that is done with SNe Ia x
 - Cosmology I guess x
- Transition into transitional SNe ::)) x
 - "on this edition of 'Hey that's different, time for a new subclass'." x
 - How they fall on the Luminosity-Width relation, and other ways they are different x
- SN2015bp
 - Its data x
 - How it compares to other transitional SNe
 x
 - Woah look at that carbon x
 - What does that mean/implications x

SNe la

- Occur in all galaxies. More frequently in spiral galaxies
- At early times spectral signatures come from neutral and singly ionized elements (O, Mg, S, Si, Ca) with the strongest being the *lovely* Si II absorption at λ6355
- Optical Carbon (C II $\sim\!\!\lambda6580$) found in $\sim\!\!30\%$ of early time spectra

SNe la Spectra

SNe la Light Curve

• Compared with other SNe types

SNe la Relevance

- Uses as standard candles
 - Cosmological distance indicators
 - Accelerated expansion (with respective redshifts) ~ Dark Energy
 - Hubble Constant precision

Supernovae

- Two avenues at which a star's life can dramatically end
 - Core Collapse ~ II's yes hydrogen
 - Binary ~ Ia's no hydrogen
 - Mass accretion
 - In-spiral merger event (maybe indicative of a tertiary companion as well)

22 / 22